RD-E2C # **Embedded thermal printers specification of Development** Copyright: Beijing Rongda Science & Technology Co., Ltd | Chapter 1: Overview | 5 | |---|----| | 1.1Power connector | 5 | | 1.2Performance indicators | 5 | | 1.3operating | 6 | | 1.3.1operating key | 6 | | 1.3.2 Operation | 6 | | 1.3.3Indicator light | 6 | | 1.4Appearance size and installation dimensions (Unit: mm) | 7 | | Chapter 2: communication interface | 8 | | 2.1 serial interface | 8 | | 2.1.1Define of Interface | 8 | | 2.1.2 Data transmission method of serial interface | 9 | | 2.2Parallel interface | 10 | | 2.2.1data interface | 10 | | 2.2.2Parallel interface data transmission method | 11 | | Chapter 3: Command system | 12 | | 3.1 Command list | 12 | | Horizontally magnify character | 13 | | 3.2 Command Details | 14 | | ESC @ | 14 | | LF | 14 | | CR | 15 | | ESC J | 15 | | ESC d n | 15 | | ESC c | | | HT | 16 | | ESC ! n | | | ESC D n1 n2 nk NULL | 17 | | ESC – n | . 18 | |---------------------------|------| | ESC + | . 18 | | GS B n | . 19 | | FS 2 n | . 19 | | ESC \$ nL nH | . 20 | | ESC I n | . 20 | | ESC Q n | . 21 | | ESC 1 n | . 21 | | ESC SP n | . 21 | | ESC a n | . 22 | | FS r n | . 22 | | ESC U | . 23 | | ESC V | . 23 | | ESC X | . 23 | | ESC i | . 24 | | ESC m | . 24 | | ESC K nL nH d1 d2dk | . 24 | | ESC * m nL nH d1dk | . 25 | | GS v 0 m xL xH yL yH d1dk | . 30 | | GS h n | . 30 | | GS w n | . 31 | | GS H n | . 31 | | GS Q n | . 32 | | GS k | . 32 | | ESC ' | . 34 | | ESC v | . 35 | | FS & | . 35 | | FS | . 36 | | ESC 6 | . 36 | | ESC 7 | . 36 | | GS F n | 37 | |---|----| | ESC r d n | 37 | | Chapter 4:Maintenance and Troubleshooting | 37 | | APPENDIX | 38 | | A : printing character set | 38 | | B: character set 1 and 2 | 40 | | C: International standard ASCII | 40 | | D: bar code | 41 | | D.1 bar code coding rules | 41 | | D.2 barcode length character set | 41 | ### **Chapter 1: Overview** The printing paper width of RD-E2C THERMAL PRINTER is 57mm. Equipped with a cutter, and supports the full cutting or half cutting function. The series printer increases sheet metal casing on the basis of the W series, which is more convenient to install for customers. The printer uses fully enclosed large paper warehouse design, which can effectively prevent rain and dust from entering. This series take into account unattended printing capabilities, and in order to prevent inadvertent phenomenon, the paper and key functions are placed inside the printer. Only when the panel is opened, the printer can change paper and do the button operation. Meanwhile, also equip with a safety lock on the printer panel, after the lock to the printer's front panel will not be opened, and at this time only the professional staff with the key can open the front panel. The series printers have two models: RD-E2C-P and RD- E2C-S. The former is a 26-pin standard parallel printer; and the latter is 5-pin RS232 serial interface printer. The series printer has the printing paper width, high speed, small size and other characteristics. They are used in the Bank Queue, supermarkets lockers, game consoles, subway coupons and other equipments. # 1.1Power connector Power Interface is the 4PIN, which is 2.54mm at equal distance and perpendicular. | pin | name | description | |-----|------|-------------| | 1 | VCC | DC12-24V | | 2 | | | | 3 | GND | GND | # 1.2Performance indicators | printing method | thermal line printing | | |---------------------|---|--| | Printing width | 57mm | | | Roll paper diameter | Unlimited | | | Printing line width | 36 English characters / line (standard 24 dot array high fonts) | | | Dots per line | 384dots/48mm | | | Kanji Character | GBK | | | Encoding | | | | Built-in font | ASCII font (16x8、24x12、8x6)、GBK(24x24) | | | Printing speed | 100mm/s | | | | |----------------------------------|---|--|--|--| | DataInterface | RD-E2C-S | Standard serial interface (S) (RS232 or TTL) | | | | Datamenace | RD-E2C-P | standard parallel interface (P) | | | | Resolution | 2 | 203 dpi ×203 dpi (8 dots / mm) | | | | Instruction system | ESC/P | ON (Compatible instruction system) | | | | Printable contents | English, numbers, symbols, characters, graphics, curves, bar code | | | | | Printable contents | (CODE39 EAN13 EAN8 CODABAR CODE128 CODE93 ITF) | | | | | Power supply | | DC12~24V/2A | | | | Print head life | | 50km | | | | Anomaly detection | lack of paper detection | | | | | Black Label positioning | Black Label detection | | | | | function | | | | | | Cut type | Full cut or half cut | | | | | Operating temperature / humidity | -10∼50°C/20∼85%RH(RH) | | | | # 1.3 operating There is an indication button on the printer's panel, and this button is not only an indicator but also a function key. #### 1.3.1 operating key FEED button: Click the button and the printer feed paper one line. Hold down the button and the printer continuously feedpaper. #### 1.3.2 Operation 1. self- test **Step 1:** The power of the printer is turned off. Step 2:Press the indicator button Step 3:Energize the printer for about 2 seconds and the printer will start the self-test. #### 2 Paper feed Under the printer charged state, hold down the buttons, and the printing paper starts feeding. #### 1.3.3Indicator light Power Light: When the printer is powered, the indicator light is bright with green light for long. 6 / 41 Status Light: When the printer lacks the paper, the indicator light will be in a state of continuous glint with green light. # 1.4Appearance size and installation dimensions (Unit: mm) Appearance size: feet inches length 101 mm * width 109.8 mm * depth 69.5 mm Installation dimensions: length102 mm * width 94.5 mm # Chapter 2: communication interface # 2.1 serial interface #### 2.1.1Define of Interface Data transfer: Serial Synchronization way: Asynchronous Handshake signals: CTS / RTS, DTR / DSR or XON / XOFF Baud Rate: 1200,2400,4800,9600,19200,38400,57600,115200 bps. They can be changed by software. Data Length: 8Bit Parity: None Stopping bits: 1 Interface: 5pin needle socket (Figure 2-1 is the 5P communication interface) figure2-1 figure2-2 | 5 core
single
row
socket
(Pin No.) | Signal
name | signal
source | direction | Illustration | |--|----------------|------------------|-------------|--| | 2 | TXD | printer | Export(out) | The printer's dashboard receives the data from the host. | | 3 | RXD | host | Import(in) | The printer's dashboard sends data to the host. (When using the 'X-ON/X-OFF' Handshake Protocol, the printer sends control code 'X-ON/X-OFF' to the computer.) | | 4 | CTS | printer | Export(out) | When the signal is in a state of 'MARK', it means that the printer is busy and can't receive data. | HTTP://WWW.RD-CN.COM 8 / 41 | | | | But when the signal is in a state of 'SPACE', it means that the printer is ready to receive data. | |---|-----|------|---| | 5 | GND |
 | Signal ground | | 1 | NC |
 | no connection | #### 2.1.2 Data transmission method of serial interface The receiving buffer of the printer is 2K (1) When the number of sending data once is less than 2K, the data can be directly sent. And the sending method is as follows: (2) If large amounts of data once is sent, need to judge the mark 'CTS' when sending the data. When the mark is '1', the data can't be sent. When the mark is '0', the data can be sent. Data can be sent in the form of packets or byte. When the data is sent in the form of packets, each data packet can't exceed 256 bytes, and the sending flowchart is as follows: # 2.2Parallel interface The RD-E2C system thermal parallel interface printer uses 26P double-row needle socket as the communication interface, and the spacing between the needles is 2.54mm. Figure 2-3 is the parallel interface figure. Figure 2-3 #### 2.2.1data interface | 26pin row
socket
(pin NO.) | Signal | Signal direction | Illustration | DB25 parallel interface wire on the PC (pin NO.) | |----------------------------------|--------|------------------|---|--| | 1 | STB/ | in | Strobe pulse to latch data, reading occurs at falling edge. | 1 | | 3 | DATA1 | In | | 2 | | 5 | DATA2 | In | | 3 | | 7 | DATA3 | In | | 4 | | 9 | DATA4 | In | 8 data pins, the logic '0' indicates low, '1' | 5 | | 11 | DATA5 | in | indicates high | 6 | | 13 | DATA6 | In | | 7 | | 15 | DATA7 | In | | 8 | | 17 | DATA8 | In | | 9 | | 19 | ACK/ | Out | Answer pulse, and "Low" level indicates that the data has been accepted | 10 | | 21 | BUSY | Out | "High" level indicates that the printer is busy and can't receive data | 11 | | 23 | PE | | Grounding (PERROR) | | | 25 | SEL | Out | "High" level indicates that the printer is | 13 | | | | | online | | |---------|------|-----|---|--------| | 4 | ERR/ | Cut | Printer error signal ,HIGH level signal | 15 | | 4 | EKK/ | Out | indicates that printer no error. | | | 2, 6, 8 | NC | | no connection | | | 10~24 | GND | | Signal ground | 12, 25 | **Matters need attention:** ①The mainframe and printer in the item 'signal source' means the source of the signal sending out ②The signal logic level is EIA level. #### 2.2.2Parallel interface data transmission method Using parallel interface to send data is relatively more trouble than using serial interface, because using parallel interface to send data need the
cooperation of the 'STB', 'BUSY' AND 'DATA' data wires. #### Sending step: step1: using the appropriate data wire connects the printer to PC step2:power on the printer and load the printing paper step3:Begin to transmit data, and flow chart is as follows: # **Chapter 3: Command system** # 3.1 Command list RD-E2C Series thermal printers use the ESC / POS compatible command, and add tosome functions such as the Chinese characters printing, Character and Chinese characters rotation, and word spacing adjustment. | Command | Function | |---------|--| | ESC c | To allow/ban reverse printing | | нт | To execute horizontal tab | | LF | To print and line feed | | CR | To print and carriage return | | ESC SP | To set the character spacing | | ESC! | To select printing modes for characters | | ESC \$ | To set printing absolute position | | ESC ' | To print curve | | ESC i | To cut the paper (only for printers with cutter) | | ESC v | Send the printer's status to the host | | | <u> </u> | | |-----------|---|--| | FS & | Select the Kanji mode | | | FS. | Cancel the Kanji mode | | | ESC + | To allow/ban the overline printing | | | ESC - | To allow/ban the underline printing (to set/clear the underline mode) | | | ESC 1 | To set the line spacing | | | ESC 6 | To select Character Set 1 (6X8) | | | ESC 7 | To select Character Set 2 (6X8) | | | ESC a | Select alignment methods | | | GS v | Print raster bit image | | | ESC @ | To initialize the printer | | | ESC D | To set the position of horizontal tab | | | GS k | To print the bar code | | | ESC J | To print and feed paper | | | ESC d | To print and feed paper n lines | | | ESC K | Printing graphics command ① | | | ESC * | Printing graphics command ② | | | ESC Q | To set the right margin width | | | ESC U | Horizontallymagnify character | | | ESC V | Vertically magnify character | | | GS H | Select the printing position for bar code character | | | GS F | Select mode | | | GS Q | Set horizontal printing position for the bar code | | | GS k | Print the bar code(s) | | | ESC X | Magnify characters | | | GS h | Select bar code's height | | | GS w | Select bar code's width | | | GS B | To allow/ban white reverse printing mode | | | ESC I | To set the printing position | | | ESC r d n | To adjust the depth of thermal printing | | | FS 2 | To set character rotation Printing | | | FS r | To select the superscript and subscript | | | | | | This chapter describes the commands of controlling the printer to print. Format specification is as follows: #### 【COMMAND】+【parameter】 - 1) 【COMMAND】 is the command, and consists of the escape character and command characters. But a small number of single-byte commands don't have the escape character. - 2) **[** parameter **]** is the parameter, which is in italics. And the parameters are not numeric characters, but the value of the character. All the examples in this chapter are compiled in C language. The 'SendDataToPrinter' function is virtual function. And require developers to write according to the actual situation of the mainframe. This function is defined as follows: SendDataToPrinter(unsigned char *buffer, unsigned int len) Illustration: send the data to the printer Unsigned char *buf //Print data command Unsigned int len //Data length. Unit: byte. #### 3.2 Command Details #### ESC @ [Name] To initialize the printer [Type] ASCII: ESC @ Decimal: 27 $\begin{array}{lll} \text{Decimal:} & 27 & 64 \\ \text{Hex:} & 1B & 40 \\ \end{array}$ [Explanation]Clear the data in the print buffer, and reset the printing parameters to the current printer default parameters. #### [Note] •The data in the receive buffer is not cleared. [Example]unsigned char str[2]; str[0] = 0x1B; str[1] = 0x40; SendDataToPrinter(str,2); #### <u>LF</u> [Name] print and feed line [Type] ASCII: LF Decimal: 10 Hex: 0A [Explanation] Print the data in the print buffer and feed one line [Note] The command sets the print position to the beginning of the line HTTP://WWW.RD-CN.COM 14 / 41 [Example] unsigned char str[2]; str[0] = 0x0A;//或str[0] = '\n' SendDataToPrinter(str,1); #### CR [Name] print and carriage return [Type] ASCII: CR Decimal: 13 Hex: 0D [Explanation] Print the data in the print buffer and carriage return [Reference] LF [Example] unsigned char str[2]; str[0] = 0x0D;//或str[0] = '\r' SendDataToPrinter(str,1); #### ESC J [Name] print and feed paper [Type] ASCII: ESC J n Decimal: 27 74 n Hex: 1B 4A n **[Explanation]**Print the data in the print buffer and feeds forward paper $[n \times 0.125 \text{mm}(0.0049")]$. #### [Comment] • After printing is finished, the command sets the print starting position to the beginning of the line. [Scope]0 ≤ n ≤ 255 [Example]unsigned char str[3]; str[0] = 0x1B; str[1] = 0x4A;str[2] = 0x4; SendDataToPrinter(str,3);//feeds forward paper 0.5mm #### ESC d n [Name] print and feed paper n lines [Type] ASCII: ESC d n [Scope] $0 \le n \le 255$ [Explanation] Print the data in the print buffer and feed paper n lines #### [Comment] - After finishing the printing, this command sets the print starting position to the beginning of the line. - One line distance is 24 vertical pitch (0.125mm) [Example]unsigned char str[3]; str[0] = 0x1B; str[1] = 0x64;str[2] = 0x4; SendDataToPrinter(str,3);//feed forward paper 4 lines HTTP://WWW.RD-CN.COM 15 / 41 #### ESC c [Name] To allow/ban reverse printing [Type] ASCII: ESC C n Decimal: 27 99 n Hex: 1B 63 n [Scope] $0 \le n \le 1$ #### [Explanation] When n=1, allow the reverse printing and the printing direction is from left to right. When n=0, ban the reverse printing and the printing direction is from right to left. #### [Comment] When the printer is vertically installed, the printer uses the reverse printing way. Reversely printing not only supports character mode, and also supports graphical mode. When reversely printing graphics, we should note the printing order of graphics unit. (See the ESC K command) [Example]unsigned char str[3]; str[0] = 0x1B; str[1] = 0x63;str[2] = 0x1 SendDataToPrinter(str,3);//reverse printing #### <u>HT</u> [Name] horizontal tab [Type] ASCII: HT Decimal: 9 Hex: 09 [Explanation] Move the print position to the next horizontal tab position [Note] • The command is ignored unless the next horizontal tab position has been set. • Horizontal tab positions are set with the 'ESC D'. [Reference]ESC D #### ESC!n [Name] To set printing mode(s) for characters [Type] ASCII: ESC ! n Decimal: 27 33 n Hex: 18 21 n [Scope] $0 \le n \le 255$ [Explanation]Set the printing mode(s) according to the value of n | bit | 0/1 | function | |--------|-----|--| | 0 | 0 | English characters (half-width) font A (12×24) | | | 1 | Englishcharacters (half-width) fontB (8×16) | | 1, 2,3 | | | | 4 | 0 | Cancel the double-height mode | | | 1 | Select the double-height mode | |---|---|-------------------------------| | 5 | 0 | Cancel the double-width mode | | | 1 | Select the double-width mode | | 6 | | | | 7 | 0 | Cancel the underline mode | | | 1 | Select the underline mode | #### [Example]unsigned char str[3]; ``` str[0] = 0x1B; ``` str[1] = 0x21; str[2] = 0x31; SendDataToPrinter(str,3);// print the character (8X16) under the double-width and double-height mode #### ESC D n1 n2 ... nk NULL [Name] To set the position of horizontal tab [Type] ASCII: ESC D n1...nk NULL Decimal: 27 68 $n1\cdots nk$ 0 Hex: 1B 44 $n1\cdots nk$ 00 [Scope] $1 \le n \le 255 \ 0 \le k \le 20$ [Explanation]Set the position of horizontal tab n specifies the column number for settinga horizontal tab position from the beginning of a line. k indicates the total number of horizontal tab positions to be set. #### [Note] - The horizontal position is stored as a value of [character width \times n]measured from the beginning of the line. The character width includes the default width of the characters' spacing. - This command deletes the previously set level positioning location. - When n = 8, the printing position is moved to the 9^{th} column by sending HT. - The command is notaffected by the ESC X command. - This command cancels the previous tabulator positionsettings. - The character printing position ,which exceeds the positioning location, will be processed as normal data - Transmit [n] k in ascending order and place a NULL code 0 at the end. - When nk is less than or equal to the preceding value n (k-1),tab setting is finished and the following data is processed as normal data. - ESC D NULL cancels all horizontal tab position. - Even if the character width changes, previously specified horizontal tab positions don't also change. [Default] The default tab positions are Font A (12*24). [Example]unsigned str[8]; ``` unsigned char Order = 9; str[0] = 0x1B; str[1] = 0x44; ``` ``` str[2] = 2;//one character spacing from the first column str[3] = 9;//eight character spacing from the first column str[4] = 14;//thirteen character spacing from the first column str[5] = 0; // end SendDataToPrinter (str,6) SendDataToPrinter (&Order,1); SendDataToPrinter ("HT1",3); SendDataToPrinter (&Order,1); SendDataToPrinter ("HT2",3); SendDataToPrinter (&Order,1); SendDataToPrinter ("HT3",3); Order = 0x0D; SendDataToPrinter (&Order,1); SendDataToPrinter ("1234567890123456\r",17) HT1 HT2 HT3 1234567890123456 ESC - n [Name] To select/cancel the underline mode [Type] ASCII: ESC Decimal: 27 45 n Hex: 1B 2D n [Explanation]n = 1, select the underline mode n = 0, cancel the underline mode [Note] • Underline can't act in the rotation and reverse characters. • This command only affects the English and Kanji characters. [Default] n = 0. [Example]unsigned char str[3]; str[0] = 0x1B; str[1] = 0x2D; str[2] = 0x1; SendDataToPrinter (str, 3);// set the underline ESC + [Name] allow/ban the overline printing [Type] ASCII: ESC 27 Decimal: 43 n Hex: 1B 2B n [Explanation] When n=1, allow the overline printing When n=0, ban the
overline printing [Note] ``` - Overline can't act in the rotation and reverse characters. - This command only affects the English and Kanji characters. ``` [Default] n = 0 [Example] unsigned char str[3]; str[0] = 0x1B; str[1] = 0x2B; str[2] = 0x1; ``` SendDataToPrinter (str,3);// set the overline #### GS B n [Name] select/cancel white reverse printing mode ``` [Type] ASCII: GS B n Decimal: 29 66 n Hex: 1D 42 n ``` [Scope] $0 \le n \le 255$ [Explanation]select/cancel white reverse printing mode - When the LSB of n is 0, cancel white/black reverse printing mode. - When the LSB of n is 1, select white/black reverse printing mode. #### [Comment] - Only the lowest bit of n is valid. - The command is valid for the built-in and user-defined characters. - This command only affects the English and Kanji characters. [Default] n=0 [Example]unsigned char str[3]; ``` str[0] = 0x1D; str[1] = 0x42; str[2] = 1;// set the white reverse printing mode SendDataToPrinter(str, 3); ``` #### FS 2 n [Name] set character rotation Printing [Type] ASCII: FS 2 n Decimal: 28 73 n Hex: 1C 49 n [Scope] $0 \le n \le 3$ **[Explanation]** The command can rotate the character. The value of $\bf n$ is as follows: | n | Counterclockwise rotation | |-----------|---| | (Decimal) | | | 0 | Does not rotate | | | | | 1 | 90 degrees (Counterclockwise rotation) | | | | | 2 | 180 degrees (Counterclockwise rotation) | | | | | 3 | 270 degrees (Counterclockwise rotation) | |---|---| | | | [Note]Underthe 90 degrees or 270 degrees rotation mode, the character width and height magnification direction of the general mode. ``` [Default] n=0 ``` ``` [Example]unsigned char str[3]; ``` ``` str[0] = 0x1C; str[1] = 0x49; str[2] = 1;// set 90 degrees rotation SendDataToPrinter(str, 3); ``` #### ESC \$ nL nH #### [Name]Set absolute print position ``` [Type] ASCII: ESC $ nL nH Decimal: 27 36 nL nH Hex: 1B 24 nL nH [Scope] 0 \le nL + (nH \times 256) < 384 ``` **[Explanation]** Set the distance from the beginning of the line to the position at which subsequent characters are to be printed. The distance from the beginning of the line to the printing position is N horizontal dot pitch The nL and nH are the low and high bit of double-byte unsigned integer N $.N=nL + nH \times 256$ #### [Comment] - Settings outside the specified printable area are ignored. - In mode 1, n <= 372; In mode 2, n <= 420 [Example]unsigned char str[4]; ``` str[0] = 0x1B; str[1] = 0x24; str[2] = 32;// ``` $SendDataToPrinter\ (str,\ 3);\ /\!/\ Set\ the\ absolute\ position\ to\ 32\ horizontal\ dot\ pitch\ from\ the\ left$ #### ESC I n margin #### [Name] set the left margin ``` [Type] ASCII: ESC 1 n Decimal: 27 108 n Hex: 1B 6C n ``` [Scope] $0 \le n \le 32$ #### [Explanation] The left margin is the number of characters, which isn't printed on the left side of the printing paper. The distance from the beginning of the line to the printing position is the width of n English characters. #### [Comment] - If the printing position is outside the printable area, the command is ignored. - •The width of the character includes the default character width of the character spacing #### [Example]unsigned char str[4]; HTTP://WWW.RD-CN.COM 20 / 41 ``` str[0] = 0x1B; str[1] = 0x6C; str[2] = 3;// ``` SendDataToPrinter (str, 3); // the left position is set to the width of 3 English characters from the left margin #### ESC Q n [Name] set the right margin [Type] ASCII: ESC Q n Decimal: 27 81 n Hex: 1B 51 n [Scope] $0 \le n \le 32$ [Explanation] The right margin is the number of characters, which isn't printed on the right side of the printing paper. #### [Comment] - If the printing position is outside the printable area, the command is ignored. - •The width of the character includes the default character width of the character spacing [Example]unsigned char str[4]; str[0] = 0x1B; str[1] = 0x51;str[2] = 3;// SendDataToPrinter (str, 3); //set the area of three characters' width to the unprintable area on the right side #### ESC 1 n [Name] set the line spacing [Type] ASCII: ESC 1 n Decimal: 27 49 n Hex: 1B 31 n [Scope] $0 \le n \le 255$ (The default value of 'n' is 3) [Default] n=3 [Explanation]Set the line spacing to n vertical dot pitch [Example]unsigned char str[4]; str[0] = 0x1B; str[1] = 0x31;str[2] = 8; SendDataToPrinter(str,3);//Set the line spacing to 8 vertical dot pitch #### ESC SP n [Name] set the character spacing [Type] ASCII: ESC SP n Decimal: 27 32 n Hex: 1B 20 n [Scope] $0 \le n \le 255$ (The default value of 'n' is 0) HTTP://WWW.RD-CN.COM 21 / 41 [Explanation]Set the character spacing to n horizontaldot pitch [Example]unsigned char str[4]; str[0] = 0x1B; str[1] = 0x20;str[2] = 8; SendDataToPrinter(str,3);//Set the character spacing to 8 horizontaldot pitch #### ESC an [Name]Select justification methods [Type] ASCII: ESC a n Decimal: $27~97~\mathrm{n}$ Hex: $18~61~\mathrm{n}$ [Scope] $0 \le n \le 2$ [Explanation] Aligns all the data in one line to the specified position. n selects the justification as follows: | n | justification methods | |---|-----------------------| | 0 | Left justification | | 1 | Centering | | 2 | Right justification | #### [Comment] • This command is only valid at the beginning of the line. $\textbf{[Default]} n \!=\! 0$ [Example] unsigned char str[4]; str[0] = 0x1B; str[1] = 0x61;str[2] = 1; SendDataToPrinter(str,3);// select the centering to print #### <u>FS r n</u> [Name] select the superscript and subscript [Type] ASCII: FS r n Decimal: 28 114 n Hex: 1C 72 n [Scope] $0 \le n \le 1$ [Explanation] | The value | Result | |-------------|-------------| | of n | | | n=o | superscript | | n=1 | subscript | #### [Comment] The command is effective for all characters (including English characters and Kanji) The command is ignored if n is outside the defined scope ``` [Example]unsigned char str[3]; ``` ``` str[0] = 0x1C; str[1] = 0x72; ``` str[2] = 0; SendDataToPrinter(str,3);// #### ESC U [Name] Horizontally magnify characters | [Type] | ASCII: | ESC | U | n | |--------|----------|-----|----|---| | | Decimal: | 27 | 85 | n | | | Hex: | 1B | 55 | n | [Scope] $0 \le n \le 8$ #### [Comment] The command is effective for all characters (including English characters and Kanji) The command is ignored if n is outside the defined scope #### [Reference]ESC X [Example]unsigned char str[4]; str[0] = 0x1B;str[1] = 0x55; str[2] = 2; SendDataToPrinter(str,3);//Horizontally magnify 2 times #### ESC V [Name] Vertically magnify characters Type] ASCII: ESC V n Decimal: 27 86 n Hex: 1B 56 n [Scope] $0 \le n \le 8$ #### [Comment] The command is effective for all characters (including English characters and Kanji) The command is ignored if n is outside the defined scope #### [Reference]ESC X [Example]unsigned char str[4]; str[0] = 0x1B; str[1] = 0x56;str[2] = 2; SendDataToPrinter(str,3);//Vertically magnify 2 times #### ESC X [Name] Magnify characters [Type] ASCII: ESC X n1 n2 Decimal: 27 88 n1 n2 Hex: 1B 58 n1 n2 [Scope] $0 \le n \le 8$ (1 $\le n1$ horizontal times $\le 8, 1 \le n2$ vertical times ≤ 8) #### [Comment] The command is effective for all characters (including English characters and Kanji), except barcode reading characters. The command is ignored if n is outside the defined scope. Vertical direction is the paper feeding direction, and horizontal direction is vertical with the paper feeding direction. When character clockwise rotate 90 °, the relationship between the vertical direction and horizontal direction is reversed, that is to say, this command's priority is lower than the FS 2.And when two commands is effective at the same time, the characters firstly rotate, then enlarge. #### [Example]unsigned char str[4]; ``` str[0] = 0x1B; str[1] = 0x58; str[2] = 2; str[3] = 2; ``` SendDataToPrinter(str,4);//Vertically and horizontally magnify 2 times #### ESC i #### [Name] Full cutting [Type] ASCII: ESC i Decimal: 27 105 Hex: 1B 69 [Explanation] cutter: full cutting #### [Comment] - This command does not cause feeding line. - This command is only used in the printers with cutter. #### [Example]unsigned char str[4]; ``` str[0] = 0x1B; str[1] = 0x69; ``` SendDataToPrinter(str,2);// Send the full-cutting command #### ESC_m #### [Name] Half cutting [Type] ASCII: ESC i Decimal: 27 109 Hex: 1B 6D [Explanation] cutter: half cutting #### [Comment] - This command does not cause feeding line. - This command is only used in the printers with cutter. #### [Example]unsigned char str[4]; ``` str[0] = 0x1B; str[1] = 0x6D; ``` SendDataToPrinter(str,2);// Send the half-cutting command #### ESC K nL nH d1 d2dk [Name] Printing graphics command ① [Type] ASCII ESC K nL nH d1...dk Decimal: 27 75 nL nH d1...dk Hex: 1B 4B nL nH d1...dk [Scope] 0 ≤nL ≤255 0 ≤nH ≤1 0 ≤d ≤255 #### [Explanation] This command can only print the black/white bit-imagewhose height is 8 dots and width does not exceed the printable area. The nL and nH are the low and high bit of double-byte unsigned integer N. They express the number of the dots of the bit-image on the horizontal direction. #### [Reference]ESC * #### [Comment] - The graphics command is influenced by the character enlargement command. - When using reverse printing mode, successively print each graphics unit according to the order of the graphics from bottom to up. #### [Example]unsigned char str[30]; ``` unsigned char i=0; ``` str[i++] = 0x1B; str[i++] = 0x4B; str[i++] = 15; //print the graphics whose width is 15 dots str[i++] = 0x7C; str[i++] = 0x44; str[i++] = 0x44; str[i++] = 0xFF; str[i++] = 0x44; str[i++] = 0x44; str[i++] = 0x7C; str[i++] = 0x00; str[i++] = 0x41; str[i++] = 0x62; str[i++] = 0x54; str[i++] = 0xC8; str[i++] = 0x54; str[i++] = 0x62; str[i++] = 0x41; str[i++] = 0x0D; SendDataToPrinter(str,i);//send the printing graphics command. #### ESC * m nL nH d1...dk [Name] Printing graphics command ② [Type] ASCII ESC * m nL nH d1...dk Decimal: 27 42 m nL nH d1...dk Hex: 1B 2A m nL nH
d1...dk #### [Scope]m = 0, 1, 32, 33 0 ≤nL ≤255 0 ≤nH ≤1 0 ≤d ≤255 #### [Explanation] This command can only print the black/white bit-imagewhose height is 8 dots or 24 dots and width does not exceed the printable area. The parameter meaning is as follows: Using the m to select the bit image modes, and the dots of the bit image in the horizontal direction are specified by the nL and Nh. | m | The number of vertical dots (height) | Double-width mode | | | |----|--------------------------------------|-------------------|--|--| | 0 | 8 | Twice as width | | | | 1 | 8 | single-width | | | | 32 | 24 | Twice as width | | | | 33 | 24 | single-width | |----|----|--------------| The nL and nH are the low and high bit of double-byte unsigned integer N. They express the number of the dots of the bit-image on the horizontal direction. Mode 1:When the double-width mode is single-width, its maximum is 384. When the double-width mode is twice as width, its maximum is 192. Mode 2:When the double-width mode is single-width, its maximum is 432. When the double-width mode is twice as width, its maximum is 216. d1.....dkexpress the bit-image data. And the specific format is as follows: [Example 1]m =0 (8 dots, twice as width), d1 represents the data to be printed in the first and second column. And dk represents the data to be printed in the 2kth and (2k-1)th column. The bn represents the nth bit of the byte. | d1 | d2 | d3 | d4 | d5 | d6 | d7 | d8 | | |----|----|----|----|----|----|----|----|----| | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | b7 | | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | b6 | | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | b5 | | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | b4 | | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | b3 | | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | b2 | | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | b1 | | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | b0 | Program code is as follows: ``` unsigned char str[100]; ``` j=0; str[j++] = 0x1B; str r[j++] = 0x2A; str [j++] = 0; //m=0(height is 8 dots, twice as width) str [j++] = 8; //the width of the graphic is 8dots str [j++] = 0;//the bit image data str[j++] = 0x00; str[j++] = 0x80; str[j++] = 0xFF; str[j++] = 0x90; str[j++] = 0x98; str[j++] = 0x96; str[j++] = 0x61; str[j++] = 0x00; str[j++] = 0x0D; //print the graphic SendDataToPrinter(str,j); [Example 2]m =1 (8 dots, single-width), d1 represents the data to be printed in the first column. And dk represents the data to be printed in the k^{th} column. The bn represents the n^{th} bit of the byte. | d1 | d2 | d3 | d4 | d5 | d6 | d7 | d8 | | |----|----|----|----|----|----|----|----|----| | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | b7 | | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | b6 | | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | b5 | | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | b4 | | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | b3 | | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | b2 | | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | b1 | | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | b0 | Program code is as follows: ``` unsigned char str[100]; j=0; str[j++] = 0x1B; str[j++] = 0x2A; str[j++] = 1; //m=1(height is 8 dots, don't enlarge) str[j++] = 8; //the graphic width is 8dots str[j++] = 0;//bit image data str[j++] = 0x00;str[j++] = 0x80;str[j++] = 0xFF;str[j++] = 0x90;str[j++] = 0x98; strr[j++] = 0x96;str[j++] = 0x61;str[j++] = 0x00;str[j++] = 0x0D; ;//print the graphic SendDataToPrinter(str,j); ``` **[Example 3]**m =32 (24 dots, twice as width), d1,d2 and d3 represent the data to be printed in the first, second and third column. And dk represents the data to be printed in the k^{th} column. The bn represents the n^{th} bit of the byte. | | d4 | d7 | | | | | | | | | D | d49 | |---|----|----|---|---|---|---|---|---|---|---|---|-----| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b7 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b6 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b5 | HTTP://WWW.RD-CN.COM 27 / 41 | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | b4 | |---------------|----------|---|---|---|---|---|---|---|---|---|---|---|----| | _ | _ 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | b3 | | | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | b2 | | | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | b1 | | _ | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | b0 | | $d\mathbb{K}$ | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | b7 | | | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | b6 | | | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | b5 | | | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | b4 | | | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | b3 | | | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | b2 | | | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | b1 | | | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | b0 | | d2 ≺ | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | b7 | | | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | b6 | | | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | b5 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b4 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b3 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b2 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b1 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b0 | | d3≺ | <u> </u> | • | • | | | | | | | | | | | ``` Program code is as follows: unsigned char str[200]; j=0; str[j++] = 0x1B; str[j++] = 0x2A; str[j++] = 32; //m=32(height is 24 dots, double-width) str[j++] = 12; //graphic width is 12dots str[j++] = 0;//bit image data str[j++] = 0x10; str[j++] = 0x00; str[j++] = 0x20; str[j++] = 0x1F; str[j++] = 0xFF; str[j++] = 0xE0; str[j++] = 0x1F; str[j++] = 0xFF; str[j++] = 0xE0; str[j++] = 0x10; str[j++] = 0x20; str[j++] = 0x20; str[j++] = 0x10; str[j++] = 0x20; str[j++] = 0x00; str[j++] = 0x10; str[j++] = 0x30; str[j++] = 0x00; str[j++] = 0x10; str[j++] = 0x3C; str[j++] = 0x00; str[j++] = 0x10; str[j++] = 0x2f; str[j++] = 0x00; str[j++] = 0x18; str[j++] = 0x43; str[j++] = 0xC0; str[j++] = 0xOF; str[j++] = 0xC0; str[j++] = 0xE0; str[j++] = 0x07; str[j++] = 0x80; str[j++] = 0x20; str[j++] = 0x00; str[j++] = 0x00; str[j++] = 0x20; str[j++] = 0x0D;// Print out the current graphics SendDataToPrinter(str,j); ``` **[Example 4]**m =33 (24 dots, don't enlarge), d1,d2 and d3 represent the data to be printed in the first, second and third column. And dk represents the data to be printed in the k^{th} column. The bn represents the n^{th} bit of the byte. | | | | d4 | d7 | | | | | | | | | D | d49 | |-------------|---|---|----|----|---|---|---|---|---|---|---|---|---|-----| | | / | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b7 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b6 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b5 | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | b4 | | d1 < | ١ | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | b3 | | | | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | b2 | | | | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | b1 | | | | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | b0 | | | _ | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | b7 | | | | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | b6 | | | | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | b5 | | | | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | b4 | | d2 ≺ | | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | b3 | | | | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | b2 | | | | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | b1 | | | | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | b0 | | | | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | b7 | | | | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | b6 | | | | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | b5 | | עפג | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b4 | | d3< | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b3 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b2 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b1 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b0 | Program code is as follows: ``` unsigned char str[200]; j=0; str[j++] = 0x1B; str[j++] = 0x2A; str[j++] = 32; //m=33(height is 24 dots, don't enlarge) str[j++] = 12; //graphic width is 12dots str[j++] = 0; //bit image data str[j++] = 0x10; str[j++] = 0x00; str[j++] = 0x20; str[j++] = 0x1F; str[j++] = 0xFF; str[j++] = 0xE0; str[j++] = 0x1F; str[j++] = 0xFF; str[j++] = 0xE0; str[j++] = 0x10; str[j++] = 0x20; str[j++] = 0x10; ``` str[j++] = 0x18; str[j++] = 0x43; str[j++] = 0xC0; str[j++] = 0xOF; str[j++] = 0xC0; str[j++] = 0xE0; str[j++] = 0x07; str[j++] = 0x80; str[j++] = 0x20; str[j++] = 0x00; str[#### GS v 0 m xL xH yL yH d1....dk [Name] Print raster bit image [Type] ASCII: GS v 0 m xL xH yL yH d1...dk Decimal: 29 118 48 m xL xH yL yH d1...dk Hex: 1D 76 30 m xL xH yL yH d1...dk [Scope] $0 \le m \le 3, 48 \le m \le 51$ 0 ≤xL ≤255 $0 \le xH \le 255$ where $1 \le (xL + xH \times 256) \le 128$ 0 ≤yL ≤255 $0 \le yH \le 8$ where $1 \le (yL + yH \times 256) \le 4095$ 0 ≤d ≤255 $k = (xL + xH \times 256) \times (yL + yH \times 256) (k \neq 0)$ | m | mode | Vertical | Lateral | |-------|-----------------------------|-----------------|-----------------| | | | resolution(DPI) | resolution(DPI) | | 0, 48 | Normal | 203.2dpi | 203.2dpi | | 1, 49 | Double-width | 203.2dpi | 101.6dpi | | 2, 50 | Double-height | 101.6dpi | 203.2dpi | | 3, 51 | Double-width, Double-height | 101.6dpi | 101.6dpi | - •The xL and xH indicates the number of bytes in the horizontal direction of the bit-image - •The yL and yH indicates the number of bytes in the vertical direction of the bit-image #### GS h n [Name]Select bar code height [Type] ASCII: GS hn Decimal: 29 104n Hex: 1D 68n [Scope] $1 \le n \le 255$ [Explanation] Select bar code height. And N is the number of dots on the vertical direction. HTTP://WWW.RD-CN.COM 30 / 41 [Default]n = 48 [Example]unsigned char str[4]; str[0] = 0x1D; str[1] = 0x68; str[2] = 30; SendDataToPrinter(str,3);//Set the bar code height to 30 vertical dot pitch #### GS w n [Name]Select bar code width [Type] ASCII: GS wn **Decimal:** 29 119 n Hex: 1D 77 n [Scope] $1
\le n \le 4$ [Explanation]Set the horizontal width of the bar code. And n specifies the bar code width as follows: | n | Module width for | Binary-level bar code | | | | | | | | |---|----------------------|-------------------------|--------------------------|--|--|--|--|--|--| | | multi-level bar code | Thin element width (mm) | Thick element width (mm) | | | | | | | | | (mm) | | | | | | | | | | 1 | 0. 125 | 0. 125 | 0. 25 | | | | | | | | 2 | 0. 25 | 0. 25 | 0. 50 | | | | | | | | 3 | 0. 375 | 0. 375 | 0. 75 | | | | | | | | 4 | 0. 50 | 0. 50 | 1. 0 | | | | | | | [Example]unsigned char str[4]; str[0] = 0x1D; str[1] = 0x77; str[2] = 3; SendDataToPrinter(str,3);//Set the bar code width #### GS H n [Name]Select the printing position for bar code character [Type] ASCII: GS Hn **Decimal:** 29 72 n Hex: 1D 48n [Scope] $0 \le n \le 2$ [Explanation] Selects a font for the HRI characters used when printing a bar code. Use n to specify the printing position of HRI: | n | printing position | |---|--------------------| | 0 | Do not print | | 1 | Above the bar code | | 2 | Below the bar code | [Default]n=0 [Example]unsigned char str[4]; str[0] = 0x1D; str[1] = 0x48; str[2] = 2; HTTP://WWW.RD-CN.COM 31 / 41 SendDataToPrinter(str,3);// The HRI is printed below the bar code #### GS Q n [Name]Set the printing position of the bar code on the horizontal direction [Type] ASCII: GS Q Decimal: 29 81 n Hex: 1D 51 n [Scope] $0 \le n \le 255$ [Explanation]Set the distance from the beginning of one line to the position of printing bar code to N horizontal dot pitch. [Default]n=0 [Example]unsigned char str[4]; str[0] = 0x1D; str[1] = 0x51;str[2] = 32; SendDataToPrinter(str,3);// #### GS k [Name]Printbar code [Type] ASCII: ① GS k m d1...dk NUL ② GS k m n d1... dn Decimal: 29 107 m d1...dk 0 29 107 m n d1...dn Hex: 1D 6B m d1...dk 00 1D 6B m n d1...dn The range of \boldsymbol{k} and \boldsymbol{d} are determined by the type of bar code used. The range of n and d are determined by the type of bar code used. The n is the data length of the bar code to be printed. [Explanation] Select a bar code system and print the bar code. Use m to select a bar code system as follows: | m | | Bar code system | length | scope | | | | | | |--------|----|-----------------|-------------------|---|--|--|--|--|--| | Format | 0 | UPC-A | 11□k□ 12 | 48□ d□ 57 | | | | | | | 1 | 1 | UPC-E | K□ □ | 48□ d□ 57 | | | | | | | | 2 | JAN13 (EAN13) | 12□ k□ 13 | 48□ d□ 57 | | | | | | | | 3 | JAN 8 (EAN8) | 7□k□ 8 | 48□ d□ 57 | | | | | | | | 4 | CODE39 | 1 □ k | 48 □ d□ 57,65 □d□ 90,32,36,37,
43,45,46,47 | | | | | | | | 5 | ITF | 1 □ k(evennumber) | 48□ d□ 57 | | | | | | | | 6 | CODABAR | 1 □ k | 48□ d□ 57,65□d□ 68,36,43,45,
46,47,58 | | | | | | | Format | 65 | UPC-A | 11□ n□ 12 | 48□ d□ 57 | | | | | | | 2 | 66 | UPC-E | n=8 | 48□ d□ 57 | | | | | | | | 67 | JAN13 (EAN13) | 12□ n□ 13 | 48□ d□ 57 | | | | | | | | 68 | JAN 8 (EAN8) | 7□ n□ 8 | 48 □ d □ 57 | | | | | | | 69 | CODE39 | 1□ n□ 255 | 48□ d□ 57,65□d□ 90,32,36,37,
43,45,46,47 | |----|---------|--------------------------|---| | 70 | ITF | 1 □ n □ 255(even number) | 48□ d□ 57 | | 71 | CODABAR | 1 □ n □ 255 | 48 □ d□ 57,65 □d□ 68,36,43,45,
46,47,58 | | 72 | CODE93 | 1 □ n □ 255 | 0□d□ 127 | | 73 | CODE128 | 2□ n□ 255 | 0□ d□ 127 | #### [Note] - When using the format 1 command, if the bar code type specifies the data length of the bar code, k (the barcode data length received by the printer) should be equal to the specified data length, and if not equal to the specified data length, the instruction is invalid. See the related barcode data bit length [Appendix B]. - The barcode data received by the printer should be included in the character setspecified by the bar code, if some characters of the bar code data characters are outside the character set, the command is invalid. See the related barcode character set [Appendix B]. - When using the format 2 command, the value of n should be equal to the specified data length (if the kind of bar code specifies the data bit length). And if the value of n is not equal to the specified data bit length, the command is invalid. See the related barcode data bit length [Appendix B]. - •The number of ITF code data length must be even numbers. If using the format 1 to print ITF bar code, the value of k should be even numbers, but if it is odd number, the last one bit data will be ignored. If using the format 2 to print ITF bar code, the value of n should be even numbers, but if it is odd number, the last one bit data will be ignored. - •If the bar code on the horizontal direction exceeds the printable area, it is invalid. - •The command is not affected by the print modes (Eg: emphasized, double-strike print, underline, character size, or white/black reverse printing, etc.) - •Printing barcode need obey the barcode specifications, or will cause thatthe bar code cannot be scanned. - •The printer does not calculate the checksum, but if barcode needs the checksum, the checksum should be included in the bar code data, and the printer is not responsible for checking whether the checksum is wrong or right. The user calculates the checksum, and if it is wrong, it will cause that the bar code cannot be scanned. - •CODE39 code does not include the extended CODE39 code (EXTERN CODE 93). - •CODE93 code does not include the extended CODE93 code (EXTERN CODE 93). - •When using the CODE128, must first select the character set (CODE A, CODE B or CODE C) before the barcode data. Select the character set through sending the character "{" and another character; the ASCII code characters" {" is defined by sending " {" twice consecutively. | ASCII | HEX | Function | |-------|--------|-----------------------| | {A | 7B, 41 | Select the code set A | | {B | 7B, 42 | Select the code set B | | {C | 7B, 43 | Select the code set C | | {S | 7B, 53 | SHIFT | |----|--------|-------| | {1 | 7B, 31 | FNC1 | | {2 | 7B, 32 | FNC2 | | {3 | 7B, 33 | FNC3 | | {4 | 7B, 34 | FNC4 | #### ESC ' ``` [Name] Print curve ``` ``` [Type] ASCII: ESC ' nL nH x1L x1H x21L x21H xkL xkH CR Decimal: 29 39 nL nH x1L x1H x21L x21H xkL xkH 13 Hex: 1B 27 nL nH x1L x1H x21L x21H xkL xkH 0D [Scope]0 ≤ nL ≤255 0 ≤ nHL ≤1 ``` N is the number of the curve's dots and $N = nH \times 256 + nL$ The position of the curve's dots in one horizontal line: $X = xkH \times 256 + xkL$ [Explanation] Each curve consists of many dots. The command indicates that the printer prints n dots in one horizontal line, and continuously using the command can print out the curve which the user needs. [Note] This command is only applicable to impact dot matrix printer and some thermal models. #### [Example] Print curve graphic of below five equations: ``` Y1=50+40*abs (-0.01*X) *sin (X/10) Y2=50-40*abs (-0.01*X) *sin (X/10) Y3=50 Y4=50+40*abs(-0.1*X) Y5=50-40*abs(-0.01*X) C program is as follows: unsigned char str[50]; float X: unsigned int m_cur1,m_cur2,i; for(X=0;X<150;X++) //print one line of 150 dots { m_cur1 = 40*exp(-0.01*X); YY = Y*sin(X/10); str[i++] = 0x1b; str[i++] = 0x27; str[i++] = 0x5;// str[i++] = 0x0; str[i++] = 50+m_cur2; str[i++] = 0; ``` ``` str[i++] = 50-m_cur2; str[i++] = 0; str[i++] = 50; str[i++] = 0; str[i++] = 50+m_cur1; str[i++] = 0; str[i++] = 50-m_cur1; str[i++] = 0; str[i++] = 0x0D; SendDataToPrinter(str,i);// ``` #### [Print results] #### ESC v [Name] Send the printer's status to the host [Type] ASCII: ESC v Decimal: 27 118 Hex: 1B 76 [Explanation]Send the printer's status to the host [Note] It is only effective for the printer with serial interface | Bit | Function | Va | alue | |-----|------------------|----------|------------| | | | 0 | 1 | | 0 | Paper detector | No paper | Have paper | | 1 | Work status | Idle | Printing | | 2 | Receivingbuffer | No full | Full | | 3 | printer's status | Normal | Error | | 4 | Undefined | | —— | | 5 | Undefined | | —— | | 6 | Undefined | | | | 7 | Undefined | | | #### [Example] unsigned char str[4]; str[0] = 0x1B; str[1] = 0x76; SendDataToPrinter(str,2);//Send status query command to the print #### FS & [Name] Select the Kanji mode [Type] ASCII: FS& HTTP://WWW.RD-CN.COM 35 / 41 Decimal: 28 38 Hex: 1C 26 [Explanation] The printer enters Kanji printing mode [Note] After powering on the printer, the printer defaults the Kanji printing mode #### [Example] ``` unsigned char str[4]; str[0] = 0x1C; str[1] = 0x26; ``` SendDataToPrinter(str,2);//Enter Kanji printing mode #### FS. [Name] Cancel the Kanji mode [Type] ASCII: FS. Decimal: 28 46 Hex: 1C 2E [Explanation] Cancel the Kanji characters mode [Example]unsigned char str[4]; ``` str[0] = 0x1C; str[1] = 0x2E; ``` SendDataToPrinter(str,2);//Enter ASCII characters printing mode #### ESC 6 [Name] To select Character Set 1 (6X8) [Type] ASCII: ESC 6 Decimal: 27 54 Hex: 1B 36 [Explanation] After inputting the command, all of printing characters use the characters in the character set 1 (see appendix D). The character set 1 has 224 '6 x 8 dot matrix' characters, including ASCII characters and all kinds of graphic marks, etc. The range of code is 20H~FFH(32~255). [Example]unsigned char str[4]; ``` str[0] = 0x1B; str[1] = 0x36; ``` SendDataToPrinter(str,2);//Print '6X8' characters in the Character Set 1 #### ESC 7 [Name] To select Character Set 2 (6X8) [Type] ASCII: ESC 7 Decimal: 27 55 Hex: 1B 37 **[Explanation]** After inputting the command, all of printing characters use the characters in the character set 2 (see appendix D). The character set 2 has 224 '6 x 8 dot matrix' characters, Including German, French, Russian, Japanese Katakana, etc. The range of code is 20H~FFH(32~255). [Example]unsigned char str[4]; ``` str[0] = 0x1B; str[1] = 0x37; ``` SendDataToPrinter(str,2);//Print '6X8' characters in the Character Set 2 HTTP://WWW.RD-CN.COM 36 / 41 #### GS F n ``` [Name] Select mode ``` [Type] ASCII: GS F n Decimal: 29 70 n Hex: 1D 46 n [Scope] $0 \le n
\le 1$ #### [Explanation] When n=0, the number of the dots printed in each line is 384. When n=1, the number of the dots printed in each line is 432. #### [Default]n=0 [Example]unsigned char str[4]; str[0] = 0x1D; str[1] = 0x46;str[2] = 0; SendDataToPrinter(str,3);// #### ESC r d n [Name] To adjust the depth of thermal printing [Type] ASCII: ESC r d n Decimal: 27 114 d nHex: 1B 72 d n [Scope]d=2B or 2D, $0 \le n \le 255$ #### [Explanation] When d=2B, indicates the printing depth is adjusted deeper on the basis of the current printing depth. When d=2D, indicates the printing depth is adjusted more shallowly on the basis of the current printing depth. The n represents the value of the depthadjusting degree. And the larger the value, deeper the adjustment depth, and the maximum value does not exceed 255. When n=0, using 'B 72 2B 00' or '1B 72 2D 00' will lead to revert to the default value [Default]n=0 [Note]When using the deepening adjustment, the value of n is adjusted to the maximum value, orit not only affects the results but also reduces the printing life. With increasing depth, the printer will increase power consumption. [Example]unsigned char str[4]; str[0] = 0x1B; str[1] = 0x72; str[2] = 0x2B; str[3]= 0x30; SendDataToPrinter(str,4);// deepen '0X30' # **Chapter 4: Maintenance and Troubleshooting** To ensure the printer to work normally, particularly note that we don't optionally remove the HTTP://WWW.RD-CN.COM 37 / 41 print headand do not make changes to the printer through ourself. For users not using the printer shell, more particularly note protecting the printing head. - 1. If the printer is not used for a long time, we do not turn on the printer power. - 2. If the printer is not working properly, please turn off the printer's power. - 3. Power supply must meet the requirements, or it is unfavorable for the printing head, and even damages the printing head. - 4. When replacing the paper roll, please note whether there are the paper scraps and dust on the printing head. If having paper scraps and dust, please gently remove. Note the thermal paper's obverse and reverse side, and if the reverse side is uncoated, the printer can't print out the handwriting. - 5. When the printer is printing or paper feeding, we can't tear the paper, and can't more reversely drag the paper - 6. Keep the printer control panel clean - 7. When thermal printer prints unclearly, we can use the clean cotton ball soaked some alcohol to gently wipe the surface dirt on the print head chip heating element. - 8. When we connect the printer to the host, we should connect the printer data cable, and then power on the printer. - 9. To choose a good quality paper when we select the paper for the thermal printer can not only improve the printing quality, but also reduce the abrasion for thermal film. #### **APPENDIX** # A: printing character set | HEX | |-----|------|-----|---|-----|---|-----|---|-----|----|-----|---|-----|---|-----|---| | 20 | (空格) | 21 | ! | 22 | " | 23 | # | 24 | \$ | 25 | % | 26 | & | 27 | 4 | | 28 | (| 29 |) | 2A | * | 2B | + | 2C | , | 2D | - | 2E | | 2F | / | | 30 | 0 | 31 | 1 | 32 | 2 | 33 | 3 | 34 | 4 | 35 | 5 | 36 | 6 | 37 | 7 | HTTP://WWW.RD-CN.COM 38 / 41 | 38 | 8 | 39 | 9 | ЗА | : | 3B | • | 3C | < | 3D | = | 3E | > | 3F | ? | |----|-----|----|--------|----|---|----|----------|----|-----|----|----|----|----------|----|----------| | 40 | @ | 41 | Α | 42 | В | 43 | С | 44 | D | 45 | Е | 46 | F | 47 | G | | 48 | Н | 49 | 1 | 4A | J | 4B | K | 4C | L | 4D | М | 4E | N | 4F | 0 | | 50 | Р | 51 | Q | 52 | R | 53 | S | 54 | Т | 55 | U | 56 | V | 57 | W | | 58 | Χ | 59 | Υ | 5A | Z | 5B | [| 5C | \ | 5D |] | 5E | ٨ | 5F | _ | | 60 | ` | 61 | а | 62 | b | 63 | С | 64 | С | 65 | е | 66 | f | 67 | g | | 68 | h | 69 | i | 6A | j | 6B | k | 6C | I | 6D | m | 6E | n | 6F | 0 | | 70 | р | 71 | q | 72 | r | 73 | s | 74 | t | 75 | u | 76 | ٧ | 77 | W | | 78 | Х | 79 | у | 7A | z | 7B | { | 7C | 1 | 7D | } | 7E | ~ | 7F | | | 80 | Ç | 81 | ü | 82 | é | 83 | â | 84 | ä | 85 | à! | 86 | å | 87 | Ç | | 88 | ê | 89 | ë | 8A | è | 8B | ï | 8C | î | 8D | ì | 8E | Ä | 8F | Å | | 90 | É | 91 | æ | 92 | Æ | 93 | ô | 94 | ö | 95 | ò | 96 | û | 97 | ù | | 98 | ÿ | 99 | Ö | 9A | Ü | 9B | ¢ | 9C | £ | 9D | ¥ | 9E | Pts | 9F | f | | A0 | á | A1 | í | A2 | ó | А3 | ú | A4 | ñ | A5 | Ñ | A6 | а | A7 | 0 | | A8 | خ | A9 | ٦ | AA | Г | AB | 1/2 | AC | 1/4 | AD | i | AE | « | AF | » | | В0 | *** | B1 | ****** | B2 | | В3 | | B4 | + | B5 | # | В6 | 1 | В7 | П | | В8 | ٦ | В9 | 4 | ВА | | BB | 7 | ВС | 1 | BD | Ш | BE | 1 | BF | ٦ | | C0 | L | C1 | Т | C2 | Т | СЗ | ŀ | C4 | _ | C5 | + | C6 | F | C7 | - | | C8 | L | C9 | F | CA | 工 | СВ | Ī | CC | ŀ | CD | = | CE | # | CF | — | | D0 | Т | D1 | = | D2 | π | D3 | ĬL. | D4 | Ŀ | D5 | F | D6 | Г | D7 | # | | D8 | + | D9 | Ĺ | DA | Г | DB | | DC | | DD | İ | DE | | DF | | | E0 | α | E1 | β | E2 | Г | E3 | П | E4 | Σ | E5 | σ | E6 | μ | E7 | Υ | | E8 | Ф | E9 | θ | EA | Ω | EB | δ | EC | ∞ | ED | φ | EE | € | EF | Λ | | F0 | = | F1 | ± | F2 | ≥ | F3 | ≤ | F4 | ſ | F5 | | F6 | ÷ | F7 | * | | F8 | 0 | F9 | • | FA | | FB | V | FC | n | FD | 2 | FE | - | FF | | #### B: character set 1 and 2 | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | С | D | E | F | |---|---|----|--------------|---|----|----------|-------------------------|-----|-----------------|----|-------|-------------|-------------|--------|------------|---| | 2 | | ļ | II | # | \$ | 4 | 8 | 7 | (|) | * | + | , | - | | 7 | | 3 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ; | ; | \langle | = | \rangle | ? | | 4 | 0 | Ĥ | В | C | D | Ε | F | G | Н | I | J | K | L | М | И | 0 | | 5 | Ρ | Q | R | S | T | Ų | Ų | W | Х | Υ | Z | [| \ |] | \uparrow | ÷ | | 6 | ١ | à. | b | C | d | е | f | 9 | h | i | j | k | 1 | M | 'n | 0 | | 7 | Ρ | P | Υ | S | t | Ų, | Ų | W | Χ | y | Z | { | | } | ۸, | | | 8 | 0 | - | - | Ξ | П | Ī | $\frac{1}{11}$ | t | $\not\parallel$ | ħ | † | $\bar{\pi}$ | # | 月 | В | ¥ | | 9 | £ | § | \downarrow | ÷ | ٨ | <u>+</u> | ÷ | (() | \simeq | | 0 | 0 | 2 | 3 | 2 | 3 | | Α | 싢 | β | Υ | 8 | 3 | ζ | η | θ | Ŋ | μ | ν | Ω | ξ | Д | ρ | ď | | В | τ | Ÿ | ψ | (| Γ | Δ | ${\mathbin{\parallel}}$ | Σ | Ψ | Ω | Ξ | Ø | $\hat{\Pi}$ | Φ | Ϊ | 4 | | С | | _ | | | - | _ | | | 1 | \ | Γ | L | | \neg | Х | χ | | D | Г | = | 0 | | - | _ | 1 | 1 | 1 | ١ | Γ | L | J | ٦ | - | ١ | | E | 1 | 1 | r | L | Ţ | т | ŀ | 1 | ۲ | 4 | ١ | ø | ø | ١ | (|) | | F | • | ı | ï | | | | Ī | ı | Ž. | Ŋ, | r | k | ď | ٩ | | + | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | С | D | E | F | |---|-----------|------------|----|---------------|---|----------|---|------------|----|----|----------|---|----------------------------|-----------------------|------------|-------------| | 2 | Ħ | Ť | Б | ${\mathbb I}$ | Ů | ۴ | - | 4 | 4 | Ķ | 肾 | Ķ | T | Χ | ٦ | Ι | | 3 | # | | U | Π | θ | С | Э | ϵ | ¢ | Ä | ∇ | Э | ſ | ģ | ‡) | :: | | 4 | -: | Ξ | Ä | 4 | ≠ | 00 | < | \rangle | \$ | \$ | ţ | 7 | ‡ | † | X, | 11 | | 5 | * | × | (|) | 8 | > | ľ | J | |] | ٧ | | \Diamond | W | • | A | | 6 | ģ | 7 | 1 | ġ | I | # | ħ | ŧ | ŋ | ŋ | | Ħ | ž | Z | t | y | | 7 | þ | Ť | ij | Ť | ŀ | ţ | - | 7 | 礻 | J | Д | Ł | J | ٨ | # | 7 | | 8 | ķ | 4 | X | ŧ | þ | 1 | 3 | Ē | ij | ıb | V | | 7 | # | 7 | Э | | 9 | Ż | 7 | ÷ | I | # | ħ | ב | 3 | 9 | 4 | ٥ | Б | Д | Ë | Ж | 3 | | A | И | Й | Д | Ц | Ч | Ш | Щ | Ъ | Ы | Э | Ю | Я | б | § | è | \emptyset | | В | φ | 9 | ü | é | â | ä | à | á | 9 | ê | ë | ė | ï | î | ì | Ä | | С | Å | É | ₽ | Æ | ô | ö | ò | û. | ù | ÿ | ö | Ü | ¢ | R | f | á | | D | í | Ó | Ú | ñ | Ñ | <u>à</u> | Ō | Ġ | ç | ü | é | å | ä | à | á | ç | | E | \hat{e} | \ddot{e} | è | ï | î | ž | Ä | Â | έ | Ŧ | ď | ŝ | ö | ò | â | ù | | F | ÿ | ö | Ü | # | R | f | á | ź | Ó | ú | ñ | Ñ | $\underline{\hat{\sigma}}$ | $\underline{\varrho}$ | Ġ | Λ | # C:International standard ASCII #### D: bar code #### D.1 bar code coding rules - 1. UPC-A: UPC-A coding should comply with the UCC Organization (http://www.uccnet.org) specification. - 2. UPC-E: UPC-E coding should comply with the UCC Organization (http://www.uccnet.org) specification. - 3. ENAS: ENAS coding should comply with the ENA Organization (http://www.uccnet.org) specification. - 4. ENA13: ENA13 coding should comply with the ENA Organization (http://www.uccnet.org) specification - 5. CODE39: Also known as 39 codes, CODE39's starting bit and stopping bit characters must be the '*'character, and it cannot contain the characters '*' between the starting and stopping bits. And the printer's '*' is automatically given by the printer, and when programming the data need not be given, and the data can contain or cannot contain check code, and the check code have fixed algorithm. - 6. ITF: Also known asINTERLEAVED 25, intersect 25 code, INTERLEAVED 2 of 5. The length for the data bit must be even number, and the data can contain or cannot contain check code, and the check code have fixed algorithm. - 7. CODABAR: The starting bit and stopping bit must be anyone of A、B、C and D, and The starting bit character and stopping bit character can be different. The data can contain or cannot contain check code. The check code can be defined by the code man. - 8. CODE93: CODE93's starting bit and stopping bit characters must be the '*'character, and it cannot contain the characters '*' between the starting and stopping bits. And the printer's '*' is automatically given by the printer, and when programming the data need not be given, and the CODE93 data must contain two characters'check code, and the check code have fixed algorithm. #### D.2 barcode length character set | parcoac icrigin chi | arabibi bot | | |---------------------|----------------|-----------------------| | Barcode Type | Length | character set (ASCII) | | UPC-A | 12 | 0~9 | | UPC-E | 8 | 0~9 | | EAN8 | 8 | 0~9 | | EAN13 | 13 | 0~9 | | CODE39 | 27 | 0~9 A~Z SP \$ / + % * | |
INTERLEAVED 25 | even number 52 | 0~9 | | CODABAR | 32 | 0~9 - : / % . A~D | | CODE93 | Unlimited | 0~9 A~Z SP \$ / + % * | | CODE128 | 33 | |